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A solution for toroidal equilibria is given for the situation with a negative current (j(0) < 0) in the
center of the plasma column (with a positive overall current). It includes (a) a central core region
with simply nested magnetic surfaces and a negative total current, (b) an m = 1, n = 0 magnetic
island with a positive current density, and (c) an outer region with the conventional magnetic
surfaces and positive current density. The same solution, applied for q(0) < 1 in tokamaks explains
the existence of a stationary phase between internal relaxations in tokamaks with both central
pressure below and above the ideal Bussac limit. The theory gives a classification of relaxation
regimes in tokamaks (consistent with observations).

The case of MHD equilibrium in tokamaks with a neg-
ative current density near the magnetic axis and with a
positive total current is rather intriguing as, since the
early 60s, it was believed theoretically that such equi-
libria are not possible [1]. The issue recently attracted
considerable attention because of Joint European Torus
(JET) experiments [2] with an off axis non-inductive cur-
rent drive, generating an electromotive force, which may
drive a negative current in the plasma core.

Recently the theory of equilibrium was revised in con-
junction with JET experiments. It was shown in [3] that
within the theory [1], the negative current equilibria may
exist but would require a hollow plasma pressure and that
even in this case, the topology of magnetic surfaces will
be disturbed by the m > 1 islands near the inversion
surface for poloidal mangetic field. This result has been
extended by G. Hammett [4] to arbitrary shaped configu-
rations with nested magnetic surfaces. These results are
in agreement with the lack of sufficiently reversed inter-
nal currents in the JET experiments, even when electron
cyclotron current drive (ECCD) was applied in a central
”current hole” region.

Although not conclusive, still there are indications
from equilibrium reconstruction [5] that some negative
current may be present in the JET plasma core in con-
trast with existing MHD equilibrium theory. In the
present paper, we make the next step in the theory re-
vision and present the m = 1, n = 0 solution (m, n are
poloidal and toroidal wave numbers) which shows that
in a different topological situation with a magnetic is-
land the negative current toroidal equilibria can exist in
a quasi-stationary manner.

We also extended our theory to the q(0) < 1 situation
in tokamaks, where a stationary m = 1, n = 1 internal
kink was believed to be unstable according to MHD the-
ory. While there were numerous experimental measure-
ments on the Tokamak Fusion Test Reactor (TFTR) [6]
indicating local central pressure far exceeding the ideal
stability limit [7], there was no convincing explanation of
experimental stability of this internal kink mode in such
a plasma[6, 8]. Moreover, even for the “ideally stable”
plasma, the stationary phase between internal collapses

remains unexplained.
Here, we apply the same negative current solution for

analysis of the helical deformation and show that both
ideally “unstable” and “stable” profiles can be consistent
with a quasi-stationary state in the form of an island-
held equilibrium. This correlates well with a frequently
observed in TFTR [9] stationary m = 1, n = 1 perturba-
tion (in an otherwise apparently grossly “unstable” situ-
ation). In fact, such equilibria should emerge after each
internal collapse as the only stable state for the plasma.

Just before the submission of this paper, we learned
that independent numerical studies, partially overlapping
with our results for m = 1, n = 0 case, have been per-
formed [10] and submitted for publication. These studies
are consistent with our theory and extend the consider-
ation of the j(0) < 0 case to the shaped plasma.

Leaving the exact calculations to numerical simula-
tions (e.g., similar to those in [10]), we consider the
toroidal equilibrium in the Shafranov approximation of
circular magnetic surfaces shifted by ξ(a). The equation
for ξ has the form

(aB2

θξ′)′ = −aB2

θ − 2a2p̄′

R
, (1)

where a, R are the minor and major radii of the mag-
netic surfaces, and θ is the poloidal angle (with θ = 0
on the low field side), Bθ is the poloidal magnetic field,
p̄(a) ≡ 4π10−7p(a) is the (normalized) plasma pressure.
Its solution gives the Shafranov shift
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We are interested in the case when Bθ(a) is changing
direction

Bθ(a) = B′

θx, x ≡ a − ai (5)
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inside the plasma. Because Bθ(ai) = 0, there is no solu-
tion for ξ′ ∝ 1/x2 near the inverse point a = ai.

In fact, the behavior of ξ′ near the inverse point is
similar to the tearing mode perturbations with m > 1.
Therefore, an island maintained equilibrium [11] can be
expected at the inversion surface.

Near the resonance a = ai the configuration is 2-
dimensional and can be described by a simple exact solu-
tion assuming a uniform current density inside the island
and its vicinity (which is the leading approximation). We
convert this solution into an approximate form, which ex-
plicitly gives the shape of magnetic surfaces
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, (6)
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− ji

w2 cos θ

4ai
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Here, χ is the flux coordinate, which is constant along
the field lines, w is the half-width of the island, and ji is
the current density inside the island.

The matching conditions with the core (index ’c’) and
outer (’e’) regions at |χ| > w are

ξ(ac,e) = 2 〈x(χc,e, θ) cos θ〉 , (9)

ξ′x(ac,e) = 2
〈

x′

χ(χc,e, θ) cos θ
〉 dχ

dxc,e

, (10)

where the matching points ac, ae are determined by

ac,e = ai + xc,e, (11)

xc,e ≡ 〈x(χc,e, θ)〉 , (12)

and〈. . .〉 means averaging over θ. For small islands the
half-width is given by

w2

4
= −[x2ξ′(ai + x)]x→0. (13)

For the torodial equilibrium (m = 1, n = 0) it has an
explicit form

w2
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,(14)

where Btor is the toroidal magnetic field.
The above solution describes the “island” held equi-

librium (IHEq) which can withstand the ballooning
force acting on the core in the direction of the island
(Fig. 1a). It does not contain any rapidly evolving cur-
rents (Fig. 1b) and, thus, can be quasi-stationary on the
resistive time scale. This is in contrast to the “Wael-
broeck ribbon” (Fig. 1 c) held equilibria [12, 13], which
have a spiked current inside the ribbon and, thus, evolves
at the fast reconnection time τrec ' cA/(Rµ′ρs) in a high
temperature plasma (cA is the Alfven speed, ρs is the ion

sound larmor radius). The plasma pressure profile (Fig.
1d) is relatively flat within the core if compared with the
external pressure profile but still can be monotonic.
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Fig.1. (a) “Island”, and (b) “Ribbon” held equilibria.
(c) Current density and (d) pressure profiles for IHEq.
Arrows show the direction of the ballooning force acting
on the core.

Now, we consider the m = 1 n = 1 perturbations in
tokamaks. There is a well-known analogy between the
toroidal n = 0 case and the helical n = 1 equilibria, when
the central stability factor q(0) = 1/µ(0) < 1 and µ(ai) =
1. All the previous theory remains the same if Bθ is
replaced by B∗

θ ≡ (q−1)Bθ, j(a) by j∗ ≡ 2Btor/R− j(a)
and µ by 1 − µ.

For the m = 1, n = 1 equilibrium in tokamaks, expres-
sion (13) can be reduced near the island to

ξ′ = −µ′2

i λH (a)ξ0
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' −λH(a)ξ0

x2
, (15)
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using the Bussac internal mode theory, where ξ0 is the
displacement of the core center. The parameter c de-
scribes the coupling with the m = 2 mode as explained
in Ref. [7]. The width of the island is given by

w2

1,1 = 4λH(ai)ξ0. (17)

The presence of ξ0 in the island width makes a funda-
mental distinction between the toroidal n/m = 0/1 case
and helical n/m = 1/1 cases. In the toroidal case ξ ′ is
given by the right hand side of Eq. (2), while in the he-
lical case it is an operator, proportional to ξ0. In fact,
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ξ0 can be calculated analytically from Eq. (15) using
representation µc,e − 1 ' µ′

i(1 + αc,ex)
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which gives for displacement
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Matching them through the island

ξe(w) = −ξc(−w) (21)

leads to an expression determining the width of the island
in the form
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(We substituted µ′ at the q = 1 surface by the more
conventional in practice q′).
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Fig. 2. (a) IHEq for an ”ideally unstable” profiles, (b)
Kadomtsev’s current density j∗ and B∗ profiles, (c)
m = 1 perturbation ξ, and (d) its radial derivative ξ′.

For typical situation for relaxations αeai � 1 � αcai

√
eαew = e

−
1

2αeλH . (23)

Two situation are possible with the m/n = 1/1 mode:
(a) λH > 0, ξ0 > 0, when the plasma is “ideally unsta-
ble”, and (b) λH < 0, ξ0 < 0, when the plasma is “ideally
stable”. In both cases, the quasi-stationary equilibria can
exist if Eq.(22) allows for a solution for w.

Fig. 2 shows the numerical solution for λH > 0 when
the plasma displacement being positive in the center in-
tersects the axis. The island serves as a barrier between
the central core and external region, thus, keeping this
otherwise unstable configuration from collapse.
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Fig. 3. (a) IHEq for an ”idealy stable” profiles, (b) j∗

and B∗, (c) ξ , and (d) ξ′.

Fig. 3 shows the island held equilibrium in the case
λH < 0, when the plasma is ”ideally stable”. In this case
ξ(0) < 0, which in the ”stable” situation creates a force
opposite to displacement. This force is balanced by the
island.

The ”marginally stable” situation with αeλH ' 0 is
inconsistent with the presented equilibrium solution.

Summarizing, our solution for the island held equilib-
ria for both the negative toroidal current and the sta-
tionary m/n = 1/1 mode in tokamaks seems to resolve
a fundamental theoretical problem related to the exis-
tence of a quasi-stationary state in two situations when
only fast evolving configurations were known. In this re-
gard, it allows for the negative core current density in
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JET current drive experiments as well as explaining for
the first time the stationary phase between internal col-
lapses (sawtooth oscillations and internal disruptions) in
tokamaks.

Moreover, the equation (20) shows that in the ”ide-
ally unstable” situation, typical for high performance
machines, the achievable shear q′ at the q = 1 surface
is proportional to βj , while not preventing the follow-
ing collapse. This explains, in particular, a high level of
1−q(0) observed in TFTR (with peaked temperature and
density profiles, and βj ' 1− 1.5) compared to the other
machines. This fact and explanation given here may have
important implications for plasma stability control in the
large tokamak experiments.

Although we leave for separate studies the further
development and comparison with experiments of the
present theory, it is possible to emphasize the new el-
ements of this approach. In tokamak plasmas there
are several time scales relevant to internal relaxations.
The slowest is the magnetic diffusion time τσ , respon-
sible for evolution of the magnetic configuration, e.g.,
q′, then, there is the energy confinement time τE (re-
sponsible for evolution of βj), the Rutherford regime
time scale τσλH/ai, the fast collisionless reconnection
time τrec ' cA/|Rµ′ρs| and the fastest ideal MHD time
τMHD ' cA/|Rµ′ai| (essentially irrelevant).

So far, the stationary phase between relaxations was
interpreted either as a ”stabilized” ideal or reconnection
mode or, at best, as a transitional Rutherford regime.
The present theory has found a state, which exists at

the slowest time scale τσ and is affected by the plasma
heating, having τE as the time scale. It is essentially
separated from the MHD stability effects and their times
scales. At the same time, if the island disappears dur-
ing the evolution, the system undergoes a collapse. In
the case of an ”ideally stable” plasma it should go into a
transition phase, related to the Rutherford regime, and
then to the Kadomtsev (typically ”resistive”) reconnec-
tion. In the high performance plasma, there is not such
a transitional phase and the system should go into a fast
(collisionless) reconnection.

It is rather obvious, that the equilibria obtained by this
theory are stable (for perturbations with the same helic-
ity) in the ideal MHD approximation due to magnetic
flux conservation inside the magnetic island.

The present theory also gives some insight of the en-
tire process. Right after each collapse, the system is in a
marginal state with q ' 1 everywhere in the core. While
being pushed to the q(0) < 1 situation by the tempera-
ture profile, the system is testing numerous equilibrium
states, until our IHEq will emerge from the noise. Af-
ter this it goes into a quasi-stationary evolution until the
next relaxation occurs, and the process repeats itself.

On the resistive and heating time scales different evo-
lutions are possible, We leave the appropriate analysis
and generalization of the present theory on the evolving
situation for future work.
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